130 research outputs found

    Familiarity-dependent computational modelling of indoor landmark selection for route communication: a ranking approach

    Full text link
    Landmarks play key roles in human wayfinding and mobile navigation systems. Existing computational landmark selection models mainly focus on outdoor environments, and aim to identify suitable landmarks for guiding users who are unfamiliar with a particular environment, and fail to consider familiar users. This study proposes a familiarity-dependent computational method for selecting suitable landmarks for communicating with familiar and unfamiliar users in indoor environments. A series of salience measures are proposed to quantify the characteristics of each indoor landmark candidate, which are then combined in two LambdaMART-based learning-to-rank models for selecting landmarks for familiar and unfamiliar users, respectively. The evaluation with labelled landmark preference data by human participants shows that people’s familiarity with environments matters in the computational modelling of indoor landmark selection for guiding them. The proposed models outperform state-of-the-art models, and achieve hit rates of 0.737 and 0.786 for familiar and unfamiliar users, respectively. Furthermore, semantic relevance of a landmark candidate is the most important measure for the familiar model, while visual intensity is most informative for the unfamiliar model. This study enables the development of human-centered indoor navigation systems that provide familiarity-adaptive landmark-based navigation guidance

    Enrichment of OpenStreetMap data completeness with sidewalk geometries using data mining techniques

    Get PDF
    Tailored routing and navigation services utilized by wheelchair users require certain information about sidewalk geometries and their attributes to execute efficiently. Except some minor regions/cities, such detailed information is not present in current versions of crowdsourced mapping databases including OpenStreetMap. CAP4Access European project aimed to use (and enrich) OpenStreetMap for making it fit to the purpose of wheelchair routing. In this respect, this study presents a modified methodology based on data mining techniques for constructing sidewalk geometries using multiple GPS traces collected by wheelchair users during an urban travel experiment. The derived sidewalk geometries can be used to enrich OpenStreetMap to support wheelchair routing. The proposed method was applied to a case study in Heidelberg, Germany. The constructed sidewalk geometries were compared to an official reference dataset ("ground truth dataset"). The case study shows that the constructed sidewalk network overlays with 96% of the official reference dataset. Furthermore, in terms of positional accuracy, a low Root Mean Square Error (RMSE) value (0.93 m) is achieved. The article presents our discussion on the results as well as the conclusion and future research directions

    Urban nighttime leisure space mapping with nighttime light images and POI data

    Get PDF
    Urban nighttime leisure spaces (UNLSs), important urban sites of nighttime economic activity, have created enormous economic and social benefits. Both the physical features (e.g., location, shape, and area) and the social functions (e.g., commercial streets, office buildings, and entertainment venues) of UNLSs are important in UNLS mapping. However, most studies rely solely on census data or nighttime light (NTL) images to map the physical features of UNLSs, which limits UNLS mapping, and few studies perform UNLS mapping from a social function perspective. Point-of-interest (POI) data, which can reflect social activity functions, are needed. As a result, a novel methodological UNLS mapping framework, that integrates NTL images and POI data is required. Consequently, we first extracted high-NTL intensity and high-POI density areas from composite data as areas with high nightlife activity levels. Then, the POI data were analyzed to identify the social functions of leisure spaces revealing that nighttime leisure activities are not abundant in Beijing overall, the total UNLS area in Beijing is 31.08 km(2), which accounts for only 0.2% of the total area of Beijing. In addition, the nightlife activities in the central urban area are more abundant than those in the suburbs. The main urban area has the largest UNLS area. Compared with the nightlife landmarks in Beijing established by the government, our results provide more details on the spatial pattern of nighttime leisure activities throughout the city. Our study aims to provide new insights into how multisource data can be leveraged for UNLS mapping to enable researchers to broaden their study scope. This investigation can also help government departments better understand the local nightlife situation to rationally formulate planning and adjustment measures

    A conceptual framework for developing dashboards for big mobility data

    Full text link
    Dashboards are an increasingly popular form of data visualization. Large, complex, and dynamic mobility data present a number of challenges in dashboard design. The overall aim for dashboard design is to improve information communication and decision making, though big mobility data in particular require considering privacy alongside size and complexity. Taking these issues into account, a gap remains between wrangling mobility data and developing meaningful dashboard output. Therefore, there is a need for a framework that bridges this gap to support the mobility dashboard development and design process. In this paper we outline a conceptual framework for mobility data dashboards that provides guidance for the development process while considering mobility data structure, volume, complexity, varied application contexts, and privacy constraints. We illustrate the proposed framework’s components and process using example mobility dashboards with varied inputs, end-users and objectives. Overall, the framework offers a basis for developers to understand how informational displays of big mobility data are determined by end-user needs as well as the types of data selection, transformation, and display available to particular mobility datasets

    The nature of volunterreed geographic information

    Get PDF
    This contribution starts from the assumption that volunteered geographic information is a technological, cultural and scientific innovation. It therefore offers first some general background on the context that has fuelled the development of VGI and the lively scientific debates that have accompanied its success. The paper then focuses on the nature of this data by describing the main elements of VGI: the geographical reference (coordinates, geotag, etc.), the contents (texts, images, etc.) and the producers’ profiles. The opportunities and the criticalities offered by this data are described with examples drawn from recent literature and applications to highlight both the research challenges and the current state of the subject. The chapter aims to provide a guide to and a reference picture of this rapidly evolving subject

    The Key Factors in Physical Activity Type Detection Using Real-Life Data: A Systematic Review

    Get PDF
    Background: Physical activity (PA) is paramount for human health and well-being. However, there is a lack of information regarding the types of PA and the way they can exert an influence on functional and mental health as well as quality of life. Studies have measured and classified PA type in controlled conditions, but only provided limited insight into the validity of classifiers under real-life conditions. The advantage of utilizing the type dimension and the significance of real-life study designs for PA monitoring brought us to conduct a systematic literature review on PA type detection (PATD) under real-life conditions focused on three main criteria: methods for detecting PA types, using accelerometer data collected by portable devices, and real-life settings.Method: The search of the databases, Web of Science, Scopus, PsycINFO, and PubMed, identified 1,170 publications. After screening of titles, abstracts and full texts using the above selection criteria, 21 publications were included in this review.Results: This review is organized according to the three key elements constituting the PATD process using real-life datasets, including data collection, preprocessing, and PATD methods. Recommendations regarding these key elements are proposed, particularly regarding two important PA classes, i.e., posture and motion activities. Existing studies generally reported high to near-perfect classification accuracies. However, the data collection protocols and performance reporting schemes used varied significantly between studies, hindering a transparent performance comparison across methods.Conclusion: Generally, considerably less studies focused on PA types, compared to other measures of PA assessment, such as PA intensity, and even less focused on real-life settings. To reliably differentiate the basic postures and motion activities in real life, two 3D accelerometers (thigh and hip) sampling at 20 Hz were found to provide the minimal sensor configuration. Decision trees are the most common classifier used in practical applications with real-life data. Despite the significant progress made over the past year in assessing PA in real-life settings, it remains difficult, if not impossible, to compare the performance of the various proposed methods. Thus, there is an urgent need for labeled, fully documented, and openly available reference datasets including a common evaluation framework

    Psychometric properties of the MOBITEC-GP mobile application for real-life mobility assessment in older adults

    Full text link
    Aim of this study was to test the reliability and validity of the life-space measures and walking speed delivered by the MOBITEC-GP app. Participants underwent several supervised walking speed assessments as well as a 1-week life-space assessment during two assessment sessions 9 days apart. Fifty-seven older adults (47.4% male, mean age= 75.3 (±5.9) years) were included in the study. The MOBITEC-GP app showed moderate to excellent test-retest reliability (ICCs between 0.584 and 0.920) and validity (ICCs between 0.468 and 0.950) of walking speed measurements of 50 meters and above and of most 1-week life-space parameters, including life-space area, time spent out-of-home, and action range. The MOBITEC-GP app for Android is a reliable and valid tool for the assessment of real-life walking speed (at distances of 50 metres and above) and life-space parameters of older adults. Future studies should look into technical issues more systematically in order to avoid invalid measurements

    FVCOM validation experiments : comparisons with ROMS for three idealized barotropic test problems

    Get PDF
    Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): C07042, doi:10.1029/2007JC004557.The unstructured-grid Finite-Volume Coastal Ocean Model (FVCOM) is evaluated using three idealized benchmark test problems: the Rossby equatorial soliton, the hydraulic jump, and the three-dimensional barotropic wind-driven basin. These test cases examine the properties of numerical dispersion and damping, the performance of the nonlinear advection scheme for supercritical flow conditions, and the accuracy of the implicit vertical viscosity scheme in barotropic settings, respectively. It is demonstrated that FVCOM provides overall a second-order spatial accuracy for the vertically averaged equations (i.e., external mode), and with increasing grid resolution the model-computed solutions show a fast convergence toward the analytic solutions regardless of the particular triangulation method. Examples are provided to illustrate the ability of FVCOM to facilitate local grid refinement and speed up computation. Comparisons are also made between FVCOM and the structured-grid Regional Ocean Modeling System (ROMS) for these test cases. For the linear problem in a simple rectangular domain, i.e., the wind-driven basin case, the performance of the two models is quite similar. For the nonlinear case, such as the Rossby equatorial soliton, the second-order advection scheme used in FVCOM is almost as accurate as the fourth-order advection scheme implemented in ROMS if the horizontal resolution is relatively high. FVCOM has taken advantage of the new development in computational fluid dynamics in resolving flow problems containing discontinuities. One salient feature illustrated by the three-dimensional barotropic wind-driven basin case is that FVCOM and ROMS simulations show different responses to the refinement of grid size in the horizontal and in the vertical.For this work, H. Huang and G. Cowles were supported by the Massachusetts Marine Fisheries Institute (MFI) through NOAA grants DOC/NOAA/NA04NMF4720332 and DOC/ NOAA/NA05NMF472113; C. Chen was supported by NSF grants (OCE0234545, OCE0606928, OCE0712903, OCE0732084, and OCE0726851), NOAA grants (NA160P2323, NA06RG0029, and NA960P0113), MIT Sea grant (2006-RC-103), and Georgia Sea grant (NA26RG0373 and NA66RG0282); C. Winant was supported through NSF grant OCE-0726673; R. Beardsley was supported through NSF OCE—0227679 and the WHOI Smith Chair; K. Hedstrom was supported through NASA grant NAG13– 03021 and the Arctic Region Supercomputing Center; and D. Haidvogel was supported through grants ONR N00014- 03-1-0683 and NSF OCE 043557

    A finite volume numerical approach for coastal ocean circulation studies : comparisons with finite difference models

    Get PDF
    Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): C03018, doi:10.1029/2006JC003485.An unstructured grid, finite volume, three-dimensional (3-D) primitive equation coastal ocean model (FVCOM) has been developed for the study of coastal ocean and estuarine circulation by Chen et al. (2003a). The finite volume method used in this model combines the advantage of finite element methods for geometric flexibility and finite difference methods for simple discrete computation. Currents, temperature, and salinity are computed using an integral form of the equations, which provides a better representation of the conservative laws for mass, momentum, and heat. Detailed comparisons are presented here of FVCOM simulations with analytical solutions and numerical simulations made with two popular finite difference models (the Princeton Ocean Model and Estuarine and Coastal Ocean Model (ECOM-si)) for the following idealized cases: wind-induced long-surface gravity waves in a circular lake, tidal resonance in rectangular and sector channels, freshwater discharge onto the continental shelf with curved and straight coastlines, and the thermal bottom boundary layer over the slope with steep bottom topography. With a better fit to the curvature of the coastline using unstructured nonoverlapping triangle grid cells, FVCOM provides improved numerical accuracy and correctly captures the physics of tide-, wind-, and buoyancy-induced waves and flows in the coastal ocean. This model is suitable for applications to estuaries, continental shelves, and regional basins that feature complex coastlines and bathymetry.This research was supported by the U.S. GLOBEC Northwest Atlantic/Georges Bank program through NSF grants OCE-0234545, OCE-0227679, NOAA grant NA 160P2323, and NSF CoOP grant OCE-0196543 to C. Chen and NSF OCE-0227679 and the WHOI Smith Chair to R. C. Beardsley. H. Huang and Q. Xu were supported by Chen’s Georgia and South Carolina Sea Grant awards NA06RG0029 and NA960P0113. G. Cowles was supported by the SMAST fishery program through NOAA grants DOC/NOAA/NA04NMF4720332 and DOC/NOAA/NA05NMF4721131
    • …
    corecore